본문 바로가기 대메뉴 바로가기

한밭대학교수리과학과

 
HIGHHANBAT

미래가치를 창출하는 글로컬 산학일체 혁신대학

Ring Theory

Nam Kyun Kim
Nam Kyun Kim
  • Office : Building N13(#709)
  • Tel : +82-42-821-1367
  • E-mail : nkkim@hanbat.ac.kr

Field of research is the noncommutative ring and module theory. Noncommutative rings are ubiquitous in mathematics, and occur in numerous sciences. For instance, matrix multiplication which arises naturally in rings of linear transformations of vector spaces over a field, is not commutative in general. Such rings are the main object of study in linear algebra. Noncommutative rings also arise naturally in the representation theory of groups. Algebras, and more specifically group algebras.

Ring Theory

Professional Experience

  • Post-Doctor, Korea Research Foundation, Korea, Mar. 1997-Aug. 1999
  • Non-tenure Professor, Yonsei University, Korea, Mar. 2000-Feb. 2002
  • Assistant Professor, Hanbat Natinal University, Korea, Mar. 2002-Feb. 2006
  • Visiting Professor, University of Iowa, United States, Dec. 2006-Jan. 2008
  • Associate Professor, Hanbat Natinal University, Korea, Mar. 2006-Feb. 2010
  • Visiting Professor, Brigham Young University, United States, Aug. 2015-Jun. 2016
  • Professor, Hanbat National University, Korea, Mar. 2010-present

Publications

  • Baeck, Jongwook; Kim, Nam Jyun; Kwak, Tai Keun; Lee, Yang Strusture of anninilators of powers. Turkish J. Math. 46 (2022), n0. 5, 1945-1964.
  • Jeong, Jeonghee; Kim, Nam Kyun On rings whose essential maximal right ideals are GP-injective. Commun. Korean Math. Soc. 37 (2022), N0.2, 399-407.
  • Hong, Chan Yong; Kim, Hong Kee, Kim Nam Hyun; Kwak, Tai Keun; Lee, Yang Duo property on the monoid of regular elements. Algebra Colloq. 29 (2022), no. 2, 203-216.
  • Kim, Nam Kyun; Lee, Yang; Ziembowski, Michal Annihilating properties of ideals generated by coefficients of polynomials and power series. Internat. J. Algebra and Comput. 32 (2022), no.2, 237-249.
  • Jin, Hai-lan; Kim Nam Kyun; Lee, Yang; Piao, Zhelin; Ziembowski, Michal Structure of rings with commutative factor rings for some ideals contained in their centers. Hacet. J.Math. Stat. 50 (2021), no.5, 1280-1291.
  • Baeck, Jongwook; Kim Nam Kyun; Lee, Yang Erratum: Radicals in differential polynomial rings. Internat. J. Algebra Comput. 31 (2021), no.1, 199-200.
  • Baeck, Jongwook; Kim Nam Kyun; Lee, Yang Radicals in differential polynomial rings. Internat. J. Algebra Comput. 31 (2021), no.1, 63-79.
  • Hong, Chan Yong; Kim, Hong Kee; Kim, Nam Kyun; Kwak, Tai Keun; Lee, yang Structure of weakly one-sided duo Ore extensions. Proc. Indian Acad. Sci. Math. Sci. 131 (2021), no.1, Paper No.3, 16pp.
  • Hong, Chan Yong; Kim, Hong Kee; Kim, Nam Kyun; Kwak, Tai Keun; Lee, yang One-sided duo property on nilpotents. Hacet. J. Math. Stat. 49 (2020), no.6, 1974-1987.
  • Baeck, Jongwook; Kim Nam Kyun; Lee, Yang; Nielsen, Pace P. Zero-divisor placement, a condition of Camillo, and the McCoy property. J. Pure Appl. Algebra 224 (2020), no. 12, 106432, 14 pp.
  • Hong, Chan Yong; Kim Nam Kyun Descriptions of radicals of skew polynomial and skew Laurent polynomial rings. J. Pure Appl. Algebra 223 (2019), no. 8, 3413-3424.
  • Hong, Chan Yong; Kim Nam Kyun; Madill, Blake W.; Nielsen, Pace P. Ziembowski, Michal Homogeneous nilradicals over semigroup graded rings. J. Pure Appl. Algebra 222 (2018), no. 7, 1513-1528.
  • Hong, Chan Yong; Kim Nam Kyun; Lee, Yang; Nielsen, Pace P. AMITSUR'S PROPERTY FOR SKEW POLYNOMIALS OF DERIVATION TYPE. Rocky Mountain J. Math. 47 (2017), no.7, 2197-2218.
  • Hong, Chan Yong; Huh, Chan; Kim, Hong kee; Kim, Nam kyun; Lee, Yang; Park, Jeong Sook; Ryu, Sung Ju; Yun, Sang Jo ON A RING STRUCTURE RELATED TO ANNIHILATORS. J. Algebra Appl. 16 (2017), no.8, 1750156, 19pp.
  • Cheon, Jeoung Soo; Kim, Hong Kee; Kim, Nam Kyun; Lee, Chang Ik; Lee, Yang; Sung, Hyo Jin AN ELABORATION OF ANNIHILATORS OF POLYNOMIALS. Bull. Korean Math. Soc. 54 (2017) no.2, 521-541.
  • Hong, Chan Yong; Kim, Nam Kyun; Kwak, Tai Keun; Lee, Yang ON EXTENSIONS OF MATRIX RINGS WITH SKEW HOCHSCHILD 2-COCYCLES. Front. Math. China 11 (2016), no.4, 869-900.
  • Kim, Nam Kyun; Kwak, Tai Keun; Lee Yang ON A GENERALIZATION OF RIGHT DUO RINGS. Bull. Korean Math. Soc. 53 (2016), no.3, 925-942.
  • Hong, Chan Yong; Kim Nam Kyun; Lee, Yang ON LN RINGS AND TOPOLOGICAL PROPERTIES OF PRIME SPECTRA. J. Algebra Appl. 15 (2016), no.6, 1650102, 17pp.
  • Hong, Chan Yong; Kim Nam Kyun; Lee, Yang STRUCTURE OF ZERO-DIVISORS IN SKEW POWER SERIES RINGS. J. Korean Math. Soc. 52 (2015), no.4, 663-683.
  • Kim, Hong Kee; Kim, Nam Kyun; Kwak, Tai Keun; Lee, Yang; Marubayashi, Hidetoshi: On α-nilpotent elements and α-Armendariz rings. J. Algebra Appl. 14 (2015), no. 5, 1550064, 21 pp.
  • Hong, Chan Yong; Kim, Nam Kyun; Lee, Yang: Structure of zero- divisors in skew power series rings. J. Korean Math. Soc. 52 (2015), no. 4, 663–683.
  • Jung, Da Woon; Kim, Nam Kyun; Lee, Yang; Ryu, Sung Ju: On properties related to reversible rings. Bull. Korean Math. Soc. 52 (2015), no. 1, 247–261.
  • Kim, Nam Kyun; Kwak, Tai Keun; Lee, Yang: Semicommutative property on nilpotent products. J. Korean Math. Soc. 51 (2014), no. 6, 1251–1267.
  • Kim, Nam Kyun; Lee, Yang; Seo, Yeonsook: Structure of idempotents in rings without identity. J. Korean Math. Soc. 51 (2014), no. 4, 751–771.
  • Kim, Nam Kyun; Kwak, Tai Keun; Lee, Yang: Insertion-of-factors- property skewed by ring endomorphisms. Taiwanese J. Math. 18 (2014), no. 3, 849– 869.
  • Hirano, Yasuyuki; Hong, Chan Yong; Kim, Hong Kee; Kim, Nam Kyun; Lee, Yang: Annihilators in ideals of coefficients of zero-dividing polynomials. Taiwanese J. Math. 18 (2014), no. 3, 731–751.
  • Hong, Chan Yong; Kim, Nam Kyun; Nielsen, Pace P. Radicals in skew polynomial and skew Laurent polynomial rings. J. Pure Appl. Algebra 218 (2014), no. 10, 1916–1931.
  • Kim, Nam Kyun; Lee, Yang: On a ring property unifying reversible and right duo rings. J. Korean Math. Soc. 50 (2013), no. 5, 1083–1103.
  • Diesl, Alexander J.; Hong, Chan Yong; Kim, Nam Kyun; Nielsen, Pace P.: Properties which do not pass to classical rings of quotients. J. Algebra 379 (2013), 208–222.
  • Hong, Chan Yong; Kim, Nam Kyun; Lee, Yang; Nielsen, Pace P.: On σ -nil ideals of bounded index of σ-nilpotence. J. Algebra 371 (2012), 492 –509.
  • Jung, Da Woon; Kim, Nam Kyun; Lee, Yang; Yang, Sung Pil: Nil-Armendariz rings and upper nilradicals. Internat. J. Algebra Comput. 22 (2012), no. 6, 1250059, 13 pp.
  • Kim, Nam Kyun; Lee, Yang: On strong π-regularity and π-regularity. Comm. Algebra 39 (2011), no. 11, 4470–4485.
  • Hong, Chan Yong; Jeon, Young Cheol; Kim, Nam Kyun; Lee, Yang: The McCoy condition on noncommutative rings. Comm. Algebra 39 (2011), no. 5, 1809–1825.
  • Hong, Chan Yong; Kim, Nam Kyun; Lee, Yang: Radicals of skew polynomial rings and skew Laurent polynomial rings. J. Algebra 331 (2011), 428–448.
  • Ha, Cheong Mi; Huh, Chan; Kim, Hong Kee; Kim, Nam Kyun; Lee, Yang: On a hereditary radical property relating to the reducedness. Comm. Algebra 39 (2011), no. 2, 608–620.
  • Jeon, Young Cheol; Kim, Hong Kee; Kim, Nam Kyun; Kwak, Tai Keun; Lee, Yang; Yeo, Dong Eun: On a generalization of the McCoy condition. J. Korean Math. Soc. 47 (2010), no. 6, 1269–1282.
  • Hong, Chan Yong; Kim, Nam Kyun; Lee, Yang: Skew polynomial rings over semiprime rings. J. Korean Math. Soc. 47 (2010), no. 5, 879–897.
  • Jeon, Young Cheol; Kim, Nam Kyun; Lee, Yang: On fully idempotent rings. Bull. Korean Math. Soc. 47 (2010), no. 4, 715–726.
  • Hong, Chan Yong; Kim, Nam Kyun; Kwak, Tai Keun: On quasi-rigid ideals and rings. Bull. Korean Math. Soc. 47 (2010), no. 2, 385–399.
  • Hong, Chan Yong; Kim, Nam Kyun; Lee, Yang: Extensions of McCoy’s theorem. Glasg. Math. J. 52 (2010), no. 1, 155–159.
  • Camillo, Victor; Hong, Chan Yong; Kim, Nam Kyun; Lee, Yang; Nielsen, Pace P.: Nilpotent ideals in polynomial and power series rings. Proc. Amer. Math. Soc. 138 (2010), no. 5, 1607–1619.
  • Kim, Hong Kee; Kim, Nam Kyun; Jeong, Mun Seob; Lee, Yang; Ryu, Sung Ju; Yeo, Dong Eun: On conditions provided by nilradicals. J. Korean Math. Soc. 46 (2009), no. 5, 1027–1040.
  • Hwang, Seo Un; Kim, Nam Kyun; Lee, Yang: On rings whose right annihilators are bounded. Glasg. Math. J. 51 (2009), no. 3, 539–559.
  • Hong, Chan Yong; Kim, Nam Kyun; Lee, Yang: Ore extensions of quasi-Baer rings. Comm. Algebra 37 (2009), no. 6, 2030–2039.
  • Hong, Chan Yong; Kim, Nam Kyun; Lee, Yang; Nielsen, Pace P.: The minimal prime spectrum of rings with annihilator conditions. J. Pure Appl. Algebra 213 (2009), no. 7, 1478–1488.
  • Huh, Chan; Kim, Nam Kyun; Lee, Yang: An Anderson’s theorem on noncommutative rings. Bull. Korean Math. Soc. 45 (2008), no. 4, 797– 800.
  • Ham, Kyung-Yuen; Jeon, Young Cheol; Kang, Jinwoo; Kim, Nam Kyun; Lee, Wonjae; Lee, Yang; Ryu, Sung Ju; Yang, Hae-Hun: IFP rings and near-IFP rings. J. Korean Math. Soc. 45 (2008), no. 3, 727–740.
  • Hong, Chan Yong; Kim, Nam Kyun; Lee, Yang; Ryu, Sung Ju: Rings with Property (A) and their extensions. J. Algebra 315 (2007), no. 2, 612– 628.
  • Hong, C. Y.; Kim, H. K.; Kim, N. K.; Kwak, T. K.; Lee, Y.; Park, K. S.: Rings whose nilpotent elements form a Levitzki radical ring. Comm. Algebra 35 (2007), no. 4, 1379–1390.
  • Hong, Chan Yong; Jeon, Young Cheol; Kim, Kyoung Hwan; Kim, Nam Kyun; Lee, Yang: Weakly regular rings with ACC on annihilators and maximality of strongly prime ideals of weakly regular rings. J. Pure Appl. Algebra 207 (2006), no. 3, 565–574.
  • Kim, Nam Kyun; Lee, Ki Hwan; Lee, Yang: Power series rings satisfying a zero divisor property. Comm. Algebra 34 (2006), no. 6, 2205–2218.
  • Cho, Yong Uk; Kim, Nam Kyun; Kwon, Mi Hyang; Lee, Yang: Classical quotient rings and ordinary extensions of 2-primal rings. Algebra Colloq. 13 (2006), no. 3, 513–523.
  • Hong, Chan Yong; Kim, Nam Kyun; Lee, Yang: Hereditary and semiperfect distributive rings. Algebra Colloq. 13 (2006), no. 3, 433–440.
  • Kim, Nam Kyun; Lee, Yang; Ryu, Sung Ju: An ascending chain condition on Wedderburn radicals. Comm. Algebra 34 (2006), no. 1, 37–50.
  • Huh, Chan; Kim, Hong Kee; Kim, Nam Kyun; Lee, Yang: Basic examples and extensions of symmetric rings. J. Pure Appl. Algebra 202 (2005), no. 1, 154–167.
  • Kim, Hong Kee; Kim, Nam Kyun; Lee, Yang: Weakly duo rings with nil Jacobson radical. J. Korean Math. Soc. 42 (2005), no. 3, 457–470.
  • Hong, Chan Yong; Kim, Nam Kyun; Kwak, Tai Keun: Extensions of generalized reduced rings. Algebra Colloq. 12 (2005), no. 2, 229–240.
  • Hong, Chan Yong; Kim, Nam Kyun; Kwak, Tai Keun; Lee, Yang: Extensions of zip rings. J. Pure Appl. Algebra 195 (2005), no. 3, 231– 242.
  • Hong, Chan Yong; Kim, Nam Kyun; Kwak, Tai Keun: Nilradicals of skew power series rings. Bull. Korean Math. Soc. 41 (2004), no. 3, 507–519.
  • Huh, Chan; Kim, Nam Kyun; Lee, Yang: Examples of strongly π-regular rings. J. Pure Appl. Algebra 189 (2004), no. 1-3, 195–210.
  • Kim, Jin Yong; Kim, Nam Kyun: On rings containing a p-injective maximal left ideal. Comm. Korean Math. Soc. 18 (2003), no. 4, 629–633.
  • Kim, Nam Kyun; Lee, Yang: Extensions of reversible rings. J. Pure Appl. Algebra 185 (2003), no. 1-3, 207–223.
  • Hong, Chan Yong; Kim, Nam Kyun; Kwak, Tai Keun: On skew Armendariz rings. Comm. Algebra 31 (2003), no. 1, 103–122.
  • Hong, Chan Yong; Kim, Nam Kyun; Lee, Yang: Exchange rings and their extensions. J. Pure Appl. Algebra 179 (2003), no. 1-2, 117–126.
  • Hong, Chan Yong; Kim, Nam Kyun; Kwak, Tai Keun: On the maximality of prime ideals in exchange rings. Comm. Korean Math. Soc. 17 (2002), no. 3, 409–422.
  • Kim, Nam Kyun; Lee, Yang: On rings whose prime ideals are completely prime. J. Pure Appl. Algebra 170 (2002), no. 2-3, 255–265.
  • Hong, Chan Yong; Kim, Nam Kyun; Lee, Yang: On rings whose homomorphic images are p-injective. Comm. Algebra 30 (2002), no. 1, 261–271.
  • Kim, Jin Yong; Yang, Hee Sun; Kim, Nam Kyun; Nam, Sang Bok: Some comments on simple singular GP-injective modules. Kyungpook Math. J. 41 (2001), no. 1, 23–27.
  • Huh, Chan; Kim, Nam Kyun; Lee, Yang: On exchange rings with primitive factor rings Artinian. Comm. Algebra 28 (2000), no. 10, 4989– 4993.
  • Hong, Chan Yong; Kim, Nam Kyun; Kwak, Tai Keun: Ore extensions of Baer and p.p.-rings. J. Pure Appl. Algebra 151 (2000), no. 3, 215–226.
  • Kim, Nam Kyun; Lee, Yang: On right quasi-duo rings which are π -regular. Bull. Korean Math. Soc. 37 (2000), no. 2, 217–227.
  • Hong, Chan Yong; Kim, Nam Kyun; Kwak, Tai Keun: On rings whose prime ideals are maximal. Bull. Korean Math. Soc. 37 (2000), no. 1, 1–9.
  • Hong, Chan Yong; Kim, Jin Yong; Kim, Nam Kyun: On von Neumann regular rings. Comm. Algebra 28 (2000), no. 2, 791–801.
  • Kim, Nam Kyun; Lee, Yang: Armendariz rings and reduced rings. J. Algebra 223 (2000), no. 2, 477–488.
  • Hong, Chan Yong; Kim, Nam Kyun; Kwak, Tai Keun; Lee, Yang: On weak π-regularity of rings whose prime ideals are maximal. J. Pure Appl. Algebra 146 (2000), no. 1, 35–44.
  • Kim, Nam Kyun; Kwak, Tai Keun: Minimal prime ideals in 2-primal rings. Math. Japon. 50 (1999), no. 3, 415–420.
  • Kim, Nam Kyun; Nam, Sang Bok; Kim, Jin Yong: On simple singular GP-injective modules. Comm. Algebra 27 (1999), no. 5, 2087–2096.
  • Lee, Yang; Kim, Nam Kyun; Hong, Chan Yong: Counterexamples on Baer rings. Comm. Algebra 25 (1997), no. 2, 497–507.
  • Nam, Sang Bok; Kim, Nam Kyun; Kim, Jin Yong: On simple GP-injective modules. Comm. Algebra 23 (1995), no. 14, 5437–5444.

Presentation

  • Some characterizations of 2-primal rings, The 31st Symposium on Ring Theory and Representation Theory and Japan-Korea Ring Theory and Representation Theory Seminar, Osaka, Jan. 1998.
  • Generalized principally injective maximal ideals, International Symposium on Ring Theory, Kyongju, July, 1999.
  • The minimal prime spectrum of rings with annihilator conditions, 2008 Global KMS International Conference, Oct. 2008.
  • Ore extensions of quasi-Baer rings, 2009 Joint Meeting of the KMS and AMS, Dec. 2009.
  • Nil Armendariz rings and upper nilradicals, The 6th China-Japan-Korea International Conference on Ring and Module Theory, July, 2011.
  • Skew Hochschild extensions of rings, 2012 KMS Spring Meeting, April, 2012.
  • Radicals of skew polynomial rings, 2014 KMS Spring Meeting, April, 2014.
  • On a ring structure related to annihilators, 2017 KMS Spring Meeting, April, 2017.
  • On matrix rings with skew Hochschield 2-cocycles, 2017 KMS Annual Meeting, October, 2017.
  • On homogeneity of radicals over semigroup graded rings, 2018 KMS Spring Meeting, April, 2018.
  • Characterizations of radicals in skew polynomial and skew Laurent polynomial rings, The 8th China-Japan-Korea International Simposium on Ring Theory (Nagoya, Japan), August, 2019.
  • LN rings and topological properties of prime spectra, 2020 KMS Spring Meeting, April, 2020.
  • Characterizations of radicals of differential polynomial rings, 2020 KMS Annual Meeting, October, 2020.
  • Rings with Property (A) and annihilator condition, 2021 KMS Spring Meeting, April, 2021.
  • Radicals in Ore extensions, 2021 KMS Annual Meeting, October, 2021.
  • Questions for rings with Property (A) and annihilator condition, The Conference on Mathematical Modeling and Theoretical Analysis (Yanbian University, China), December, 2022.